Deep Scalogram Representations for Acoustic Scene Classification
نویسندگان
چکیده
منابع مشابه
Deep Neural Network Bottleneck Feature for Acoustic Scene Classification
Bottleneck features have been shown to be effective in improving the accuracy of speaker recognition, language identification and automatic speech recognition. However, few works have focused on bottleneck features for acoustic scene classification. This report proposes a novel acoustic scene feature extraction using bottleneck features derived from a Deep Neural Network (DNN). On the official ...
متن کاملDeep Within-Class Covariance Analysis for Acoustic Scene Classification
Within-Class Covariance Normalization (WCCN) is a powerful post-processing method for normalizing the within-class covariance of a set of data points. WCCN projects the observations into a linear sub-space where the within-class variability is reduced. This property has proven to be beneficial in subsequent recognition tasks. The central idea of this paper is to reformulate the classic WCCN as ...
متن کاملEnsemble Of Deep Neural Networks For Acoustic Scene Classification
Deep neural networks (DNNs) have recently achieved great success in a multitude of classification tasks. Ensembles of DNNs have been shown to improve the performance. In this paper, we explore the recent state-of-the-art DNNs used for image classification. We modified these DNNs and applied them to the task of acoustic scene classification. We conducted a number of experiments on the TUT Acoust...
متن کاملDeep Sequential Image Features for Acoustic Scene Classification
For the Acoustic Scene Classification task of the IEEE AASP Challenge on Detection and Classification of Acoustic Scenes and Events (DCASE2017), we propose a novel method to classify 15 different acoustic scenes using deep sequential learning, based on features extracted from Short-Time Fourier Transform and scalogram of the audio scenes using Convolutional Neural Networks. It is the first time...
متن کاملAcoustic Scene Classification
In this article we present an account of the state-of-the-art in acoustic scene classification (ASC), the task of classifying environments from the sounds they produce. Starting from a historical review of previous research in this area, we define a general framework for ASC and present different implementations of its components. We then describe a range of different algorithms submitted for a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE/CAA Journal of Automatica Sinica
سال: 2018
ISSN: 2329-9266,2329-9274
DOI: 10.1109/jas.2018.7511066